Solutions - Homework 1

(Due date: January 17^{th} @ 5:30 pm) Presentation and clarity are very important!

PROBLEM 1 (27 PTS)

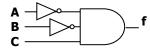
- a) Simplify the following functions using ONLY Boolean Algebra Theorems. For each resulting simplified function, sketch the logic circuit using AND, OR, XOR, and NOT gates. (14 pts)
 - $\checkmark F = \overline{\overline{A}(B + \overline{C}) + A}$

$$\checkmark F = (Z + X)(\overline{Z} + \overline{Y})(\overline{Y} + X)$$

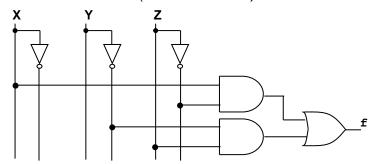
$$\checkmark F(X,Y,Z) = \prod (M_2, M_4, M_6, M_7)$$

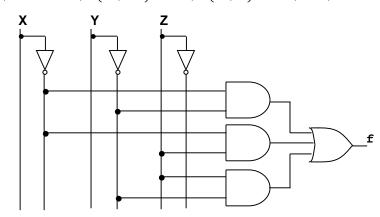
$$\checkmark F = \overline{(\overline{X} + \overline{Y})Z + \overline{X}\overline{Y}\overline{Z}}$$

 $\checkmark F = \overline{A(B+\overline{C}) + A} = \overline{A(B+\overline{C})}.\overline{A} = (A+\overline{B+\overline{C}}).\overline{A} = (\overline{B+\overline{C}}).\overline{A} = \overline{ABC}$



 \checkmark $F = (Z + X)(\bar{Z} + \bar{Y})(X + \bar{Y}) = (Z + X)(\bar{Z} + \bar{Y})$ (Consensus Theorem) $(Z + X)(\bar{Z} + \bar{Y}) = Z\bar{Y} + \bar{Z}X + X\bar{Y} = Z\bar{Y} + \bar{Z}X$ (Consensus Theorem)





✓ $F = \overline{(\overline{X} + \overline{Y})Z + \overline{X}\overline{Y}\overline{Z}} = \overline{(\overline{X} + \overline{Y})Z}.\overline{X}\overline{Y}\overline{Z} = (X + Y + \overline{Z})(X + Y + Z) = (A + \overline{Z})(A + Z), A = X + Y$ $F = (A + \overline{Z})(A + Z) = A = X + Y$

b) Using ONLY Boolean Algebra Theorems, demonstrate that the XOR operation is associative: (5 pts) $(a \oplus b) \oplus c = a \oplus (b \oplus c) = b \oplus (a \oplus c)$

 $(a\oplus b)\oplus c = (a\bar{b} + \bar{a}b)\oplus c = (\bar{a}\bar{b} + \bar{a}b)c + (a\bar{b} + \bar{a}b)\bar{c} = (ab + \bar{a}\bar{b})c + (a\bar{b} + \bar{a}b)\bar{c} = abc + \bar{a}\bar{b}c + a\bar{b}\bar{c} + \bar{a}b\bar{c} = \sum m(7,1,4,2).$ $a\oplus(b\oplus c)=a\oplus(b\bar{c}+\bar{b}c)=a(bc+\bar{b}\bar{c})+\bar{a}(b\bar{c}+\bar{b}c)=abc+a\bar{b}\bar{c}+\bar{a}b\bar{c}+\bar{a}\bar{b}c=\sum m(7,4,2,1).$ $b \oplus (a \oplus c) = (a \oplus c) \oplus b = (a\bar{c} + \bar{a}c) \oplus b = (ac + \bar{a}\bar{c})b + (a\bar{c} + \bar{a}c)\bar{b} = acb + \bar{a}\bar{c}b + \bar{a}\bar{c}\bar{b} + \bar{a}c\bar{b} = \sum m(7,2,4,1).$ * Note that $x \oplus y = y \oplus x$

- c) For the following Truth table with two outputs: (8 pts)
 - Provide the Boolean functions using the Canonical Sum of Products (SOP), and Product of Sums
 - Express the Boolean functions using the minterms and maxterms representations.
 - Sketch the logic circuits as Canonical Sum of Products and Product of Sums.

0	0	0	0	0
0	0	1	1	0
0	1	0	1	1
0	1	1	1	1
1	0	0	1	0
1	0	1	0	1
1	1	0	1	1
1	1	1	0	1

 $x y z f_1 f_2$

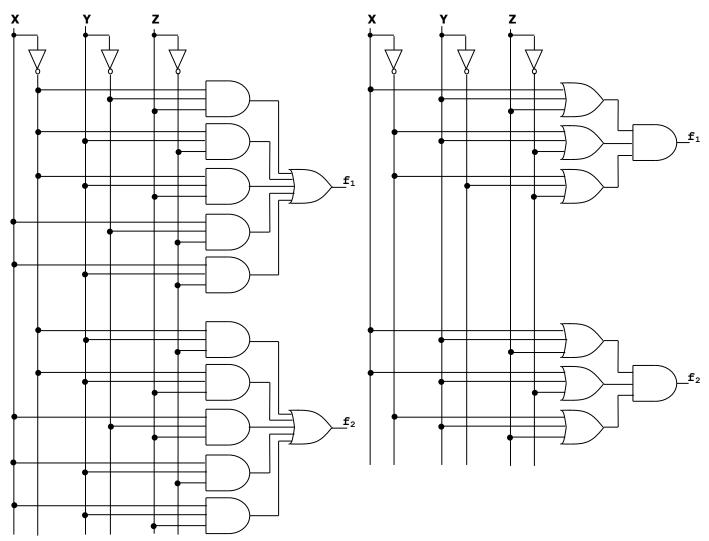
Sum of Products

Product of Sums

$$\begin{split} f_1 &= \bar{X}\bar{Y}Z + \bar{X}Y\bar{Z} + \bar{X}YZ + X\bar{Y}\bar{Z} + XY\bar{Z} \\ f_2 &= \bar{X}Y\bar{Z} + \bar{X}YZ + X\bar{Y}Z + XY\bar{Z} + XYZ \end{split} \qquad \begin{aligned} f_1 &= (X+Y+Z)(\bar{X}+Y+\bar{Z})(\bar{X}+\bar{Y}+\bar{Z}) \\ f_2 &= (X+Y+Z)(X+Y+\bar{Z})(\bar{X}+Y+Z) \end{aligned}$$

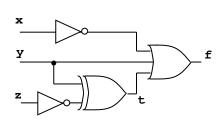
Minterms and maxterms: $f_1 = \sum (m_1, m_2, m_3, m_4, m_6) = \prod (M_0, M_5, M_7).$

$$f_2 = \sum (m_2, m_3, m_5, m_6, m_7) = \prod (M_0, M_1, M_4).$$



PROBLEM 2 (25 PTS)

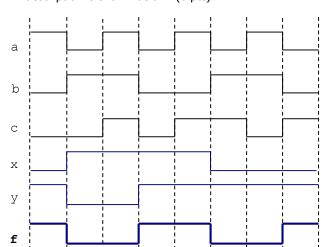
a) Construct the truth table describing the output of the following circuit and write the simplified Boolean equation (6 pts).



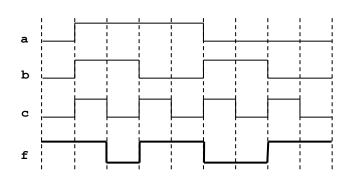
f
1
1
1
1
1
0
1
1

 $f = \bar{x} + y + \bar{z}$

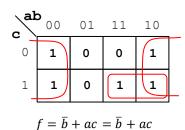
b) Complete the timing diagram of the logic circuit whose VHDL description is shown below: (6 pts)

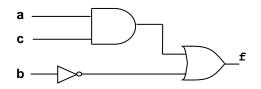


c) The following is the timing diagram of a logic circuit with 3 inputs. Sketch the logic circuit that generates this waveform. Then, complete the VHDL code. (8 pts)

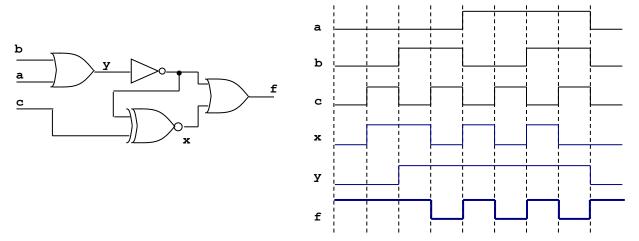


a	b	С	f
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1



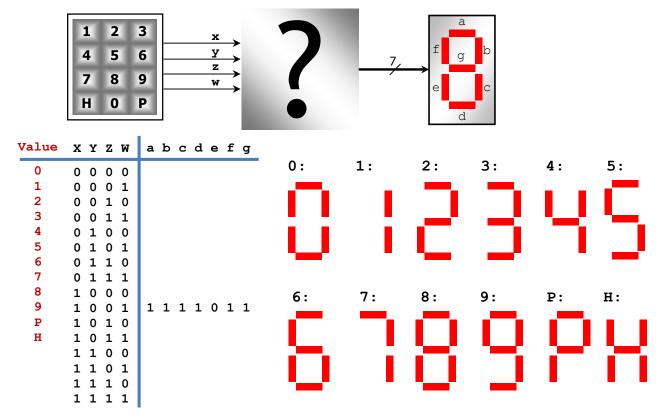


d) Complete the timing diagram of the following circuit: (5 pts)



PROBLEM 3 (25 PTS)

- A numeric keypad produces a 4-bit code as shown below. We want to design a logic circuit that converts each 4-bit code to a 7-segment code, where each segment is an LED: A LED is ON if it is given a logic `1'. A LED is OFF if it is given a logic `0'.
 - \checkmark Complete the truth table for each output (a, b, c, d, e, f, g).
 - \checkmark Provide the simplified expression for each output (a, b, c, d, e, f, g). Use Karnaugh maps for c, d, e, f, g and the Quine-McCluskey algorithm for a, b. Note: It is safe to assume that the codes 1100 to 1111 will not be produced by the keypad.



Value	x	Y	Z	W	a	b	С	d	e	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1
P	1	0	1	0	1	1	0	0	1	1	1
H	1	0	1	1	0	1	1	0	1	1	1
	1	1	0	0	Х	Х	Х	Х	X	X	X
	1	1	0	1	Х	Х	Х	Х	Х	Х	X
	1	1	1	0	Х	Х	Х	Х	X	X	X
	1	1	1	1	Х	X	X	X	X	X	X

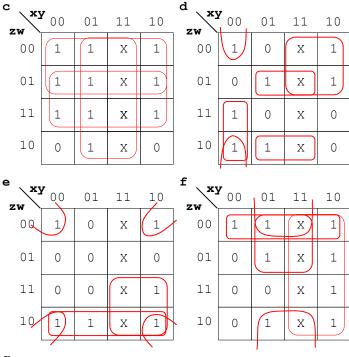
$$c = y + \bar{z} + w$$

$$d = x\bar{z} + \bar{x}\bar{y}\bar{w} + \bar{x}\bar{y}z + \bar{z}wy + z\bar{w}y$$

$$e = \bar{w}\bar{y} + z\bar{w} + xz$$

$$f = x + \bar{z}\bar{w} + y\bar{z} + y\bar{w}$$

$$g = x + z\bar{w} + y\bar{z} + \bar{y}z$$



g xy	7 00	01	11	10
00	0	1	X	1
01	0	1	Х	1
11	1	0	Х	1
10	1	1	Х	1

• $a = \sum m(0,2,3,5,6,7,8,9,10) + \sum d(12,13,14,15)$. Too many minterms. We better optimize: $\bar{a} = \sum m(1,4,11) + \sum d(12,13,14,15)$

Number	4-literal	3-literal	2-literal	1-literal
of ones	implicants	implicants	implicants implicants	
1	$m_1 = 0001$ $m_4 = 0100 \checkmark$	$m_{4,12} = -100$		
2	m ₁₂ = 1100 ✓	$m_{12,13} = 110 - \checkmark$ $m_{12,14} = 11 - 0 \checkmark$	$m_{12,13,14,15} = 11 - m_{12,14,13,15} = 11 - 4$	
3	$m_{11} = 1011 \checkmark$ $m_{13} = 1101 \checkmark$ $m_{14} = 1110 \checkmark$	$m_{13,15} = 11-1 \checkmark$ $m_{14,15} = 111- \checkmark$ $m_{11,15} = 1-11$		
4	m ₁₅ = 1111 ✓			

 $\bar{a} = \bar{x}\bar{y}\bar{z}w + y\bar{z}\overline{w} + xzw + xy$

Prime Impli	cante	Minterms				
FIIME IMPIL	Cants	1	4	11		
m ₁	$\bar{x}\bar{y}\bar{z}w$	x				
m _{4,12}	yz̄w̄		x			
m _{11,15}	xzw			x		
m _{12,13,14,15}	xy					

 $\bar{a} = \bar{x}\bar{y}\bar{z}w + y\bar{z}\overline{w} + xzw \Rightarrow \qquad a = (x + y + z + \overline{w})(\bar{y} + z + w)(\bar{x} + \bar{z} + \overline{w})$

F

• $b = \sum m(0,1,2,3,4,7,8,9,10,11) + \sum d(12,13,14,15)$. Too many minterms. We better optimize: $\bar{b} = \sum m(5,6) + \sum d(12,13,14,15)$

Number	4-literal	3-literal	2-literal	1-literal
of ones	implicants	implicants	implicants	implicants
2	$m_5 = 0101 \checkmark$ $m_6 = 0110 \checkmark$ $m_{12} = 1100 \checkmark$	$m_{5,13} = -101$ $m_{6,14} = -110$ $m_{12,13} = 110 - \checkmark$ $m_{12,14} = 11 - 0 \checkmark$	$m_{12,13,14,15} = 11 - m_{12,14,13,15} = 11 - \checkmark$	
3	$m_{13} = 1101 \checkmark m_{14} = 1110 \checkmark$	$m_{13,15} = 11-1 \checkmark m_{14,15} = 111- \checkmark$		
4	m ₁₅ = 1111 ✓			

$$\bar{b} = \bar{x}\bar{y}\bar{z}w + y\bar{z}\bar{w} + xzw + xy$$

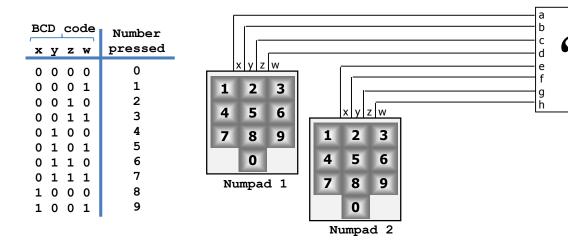
Prime Impli	aan+a	Minterms		
Prime impire	Cants	5	6	
m _{5,13}	ӯzw	x		
$m_{6,14}$ $yz\overline{w}$			x	
m _{12,13,14,15}	xy			

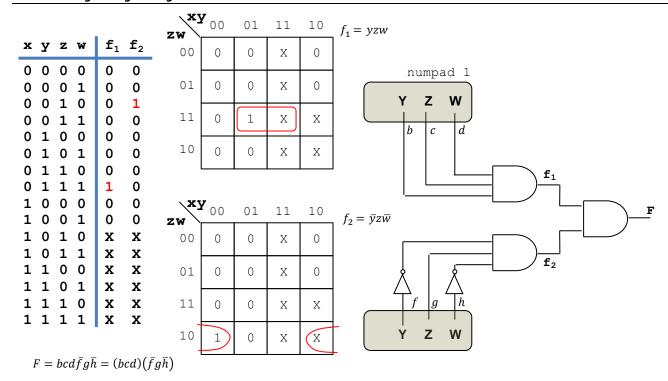
$$\bar{b} = y\bar{z}w + yz\bar{w}$$
 \Rightarrow $b = (\bar{y} + z + \bar{w})(\bar{y} + \bar{z} + w)$

PROBLEM 4 (12 PTS)

Design a logic circuit (simplify your circuit) that opens a lock (f = 1) whenever the user presses the correct number on each numpad (numpad 1: **7**, numpad2: **2**). The numpad encodes each decimal number using BCD encoding (see figure). We expect that the 4-bit groups generated by each numpad be in the range from 0000 to 1001. Note that the values from 1010 to 1111 are assumed not to occur.

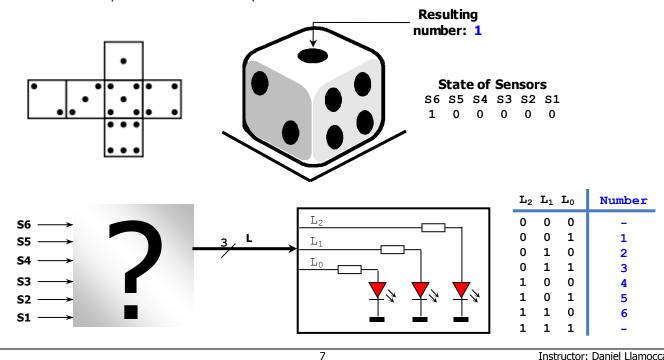
<u>Suggestion</u>: Create two circuits: one that verifies the first number (**7**), and another that verifies the second number (**2**). Then perform the AND operation on the two outputs. This avoids creating a truth table with 8 inputs.





Problem 5 (11 pts)

- The following die has a sensor on each side. Whenever a side rests on a surface, the sensor on that side generates a logic '1' (transmitted wirelessly to a controller); otherwise, it generates a '0'. The sensors outputs are named S1, S2, S3, S4, S5, S6.
- We want to design a circuit that reads the state of the 6 sensors and outputs a 3-bit value L representing the decimal value (unsigned integer) of the opposite side (upper surface). The output L is connected to 3 LEDs: A LED ON is represented by a logic '1', while the LED OFF is represented by '0'. For example, in the figure below:
 - ✓ The resting side has six dots. This means that the state of the sensors is S6=1, S5=0, S4=0, S3=0, S2=0, S1=0.
 - ✓ The opposite side (upper surface) has one dot representing the decimal number '1'. Thus, the output L must be 001.
- Under normal operation, we expect only one sensor activated at a time. However, due to a variety of problems, we might have the following cases:
 - ✓ Two or more sensors produce a '1' at the same time: Here, the state of the LEDs must be 000.
 - ✓ No sensor produces a '1': In this case, the state of the LEDs must be 000.
- Using the state of the sensors as inputs, provide the Boolean expression for each LED: L2, L1, L0. First, build the truth table where the inputs are S6-S1 and the outputs are L2-L0.



S1	S2	s3	S4	S 5	s6	${f L}_2$	L_1	\mathbf{L}_0	Number
0	0	0	0	0	0	0	0	0	_
0	0	0	0	0	1	0	0	1	1
0	0	0	0	1	0	0	1	0	2
0	0	0	1	0	0	0	1	1	3
0	0	1	0	0	0	1	0	0	4
0	1	0	0	0	0	1	0	1	5
1	0	0	0	0	0	1	1	0	6
						0	0	0	-

$$L_2 = \overline{S1} \, \overline{S2} S3\overline{S4} \, \overline{S5} \, \overline{S6} + \overline{S1} S2\overline{S3} \overline{S4} \, \overline{S5} \, \overline{S6} + S1\overline{S2} \, \overline{S3} \, \overline{S4} \, \overline{S5} \, \overline{S6}$$

$$L_1 = \overline{S1} \, \overline{S2} \, \overline{S3} \, \overline{S4} S5\overline{S6} + \overline{S1} \, \overline{S2} \, \overline{S3} S4\overline{S5} \, \overline{S6} + S1\overline{S2} \, \overline{S3} \, \overline{S4} \, \overline{S5} \, \overline{S6}$$

$$L_0 = \overline{S1} \, \overline{S2} \, \overline{S3} \, \overline{S4} \, \overline{S5} S6 + \overline{S1} S2\overline{S3} S4\overline{S5} \, \overline{S6} + \overline{S1} S2\overline{S3} \, \overline{S4} \, \overline{S5} \, \overline{S6}$$